Право

Правило минимального риска автор. Инвестор может воспользоваться одним из методов минимизации рисков. Критерий минимаксного риска Сэвиджа

Пример 2.5. Для приведенной в примере 2.1 матрицы последствий выбрать наилучший вариант решения на основе критерия Гурвица при λ =1/2.

Решение. Рассматривая матрицу последствий Q по строкам, для каждого i вычисляем значения ci= 1/2minqij + 1/2maxqij. Например, с1=1/2*2+1/2*8=5; аналогично находятся с2=7; с3=6,5; с4= 4,5. Наибольшим является с2=7. Следовательно, критерий Гурвица при заданном λ =1/2 рекомендует выбрать второй вариант (i=2 ).

2.3. Анализ связанной группы решений в условиях частичной

неопределенности

Если при принятии решения ЛПР известны вероятности pj того, что реальная ситуация может развиваться по варианту j, то говорят, что ЛПР находится в условиях частичной неопределенности. В этом случае можно руководствоваться одним из следующих критериев (правил).

Критерий (правило) максимизации среднего ожидаемого дохода . Этот критерий называется также критерием максимума среднего выигрыша. Если известны вероятности pj вариантов развития реальной ситуации, то доход, получаемый при i-ом решении, является случайной величиной Qi с рядом распределения

Математическое ожидание M [Qi ] случайной величины Qi и есть средний ожидаемый доход, обозначаемый также :

= M [Qi ] = .

Для каждого i-го варианта решения рассчитываются величины , и в соответствии с рассматриваемым критерием выбирается вариант, для которого достигается

Пример 2.6. Пусть для исходных данных примера 2.1 известны вероятности развития реальной ситуации по каждому из четырех вариантов, образующих полную группу событий:


p1 =1/2, p2=1/6, p3=1/6, p4=1/6. Выяснить, при каком варианте решения достигается наибольший средний доход и какова величина этого дохода.

Решение. Найдем для каждого i-го варианта решения средний ожидаемый доход: =1/2*5+1/6*2+1/6*8+1/6*4= 29/6, = 25/6, = 7, = 17/6. Максимальный средний ожидаемый доход равен 7 и соответствует третьему решению.

Правило минимизации среднего ожидаемого риска (другое название –критерий минимума среднего проигрыша ).

В тех же условиях, что и в предыдущем случае, риск ЛПР при выборе i-го решения является случайной величиной Ri с рядом распределения

Математическое ожидание M и есть средний ожидаемый риск, обозначаемый также : = M = . . Правило рекомендует принять решение, влекущее минимальный средний ожидаемый риск: .

Пример 2.7 . Исходные данные те же, что и в примере 2.6. Определить, при каком варианте решения достигается наименьший средний ожидаемый риск, и найти величину минимального среднего ожидаемого риска (проигрыша).

Решение. Для каждого i-го варианта решения найдем величину среднего ожидаемого риска. На основе заданной матрицы риска R найдем: = 1/2*3+1/6*3+1/6*0+1/6*8=20/6, = 4, = 7/6, = 32/6.

Следовательно, минимальный средний ожидаемый риск равен 7/6 и соответствует третьему решению: = 7/6.

Замечание . Когда говорят о среднем ожидаемом доходе (выигрыше) или о среднем ожидаемом риске (проигрыше), то подразумевают возможность многократного повторения процесса принятия решения по описанной схеме или фактическое неоднократное повторение такого процесса в прошлом. Условность данного предположения заключается в том, что реально требуемого количества таких повторений может и не быть.

Критерий (правило) Лаплпаса равновозможности (безразличия) . Этот критерий непосредственно не относится к случаю частичной неопределеннос-ти, и его применяют в условиях полной неопределенности. Однако здесь предполагается, что все состояния среды (все варианты реальной ситуации) равновероятны – отсюда и название критерия. Тогда описанные выше схемы расчета можно применить, считая вероятности pj одинаковыми для всех вариантов реальной ситуации и равными 1/n. Так, при использовании критерия максимизации среднего ожидаемого дохода выбирается решение, при котором достигается . А в соответсвии с критерием минимизации среднего ожидаемого риска выбирается вариант решения, для которого обеспечивается .

Пример 2.8. Используя критерий Лапласа равновозможности для исходных данных примера 2.1, выбрать наилучший вариант решения на основе: а) правила максимизации среднего ожидаемого дохода; б) правила минимизации среднего ожидаемого риска.

Решение. а) С учетом равновероятности вариантов реальной ситуации величины среднего ожидаемого дохода для каждого из вариантов решения составляют = (5+2+8+4)/4=19/4, = 21/4, = 26/4, = 15/4. Следовательно, наилучшим вариантом решения будет третий, и максимальный средний ожидаемый доход буде равен 26/4.

б) Для каждого варианта решения рассчитаем величины среднего ожидаемого риска на основе матрицы рисков с учетом равновероятности вариантов ситуации: = (3+3+0+8)/4 = 14/4, = 3, = 7/4, = 18/4. Отсюда следует, что наилучшим будет третий вариант, и при этом минимальный средний ожидаемый риск составит 7/4.

2.4. Оптимальность по Парето двухкритериальных финансовых

операций в условиях неопределенности

Из рассмотренного выше следует, что каждое ре­шение (финансовая операция) имеет две характеристики, которые нуждаются в оптимизации: средний ожидаемый доход и средний ожидаемый риск. Таким образом, выбор наилучшего решения является оптими­зационной двухкритериальной задачей. В задачах многокритериальной оптимизации основным понятием является понятие оптимальности по Парето . Рассмотрим это понятие для финансовых операций с двумя указанными характеристиками.

Пусть каждая операция а имеет две числовые характеристики Е(а), r (а) (например, эффективность и риск); при оптимизации Е стремятся увеличить, а r уменьшить.

Существует несколько способов постановки таких оптимизационных задач. Рассмотрим такую задачу в общем виде. Пусть А - не­которое множество операций, и разные операции обязательно различаются хо­тя бы одной характеристикой. При выборе наилучшей опе­рации желательно, чтобы Е было больше, а r меньше.

Будем говорить, что операция а доминирует операцию b , и обозначать а > b, если Е(а) ≥ Е(b ) и r (a ) r(b ) и хотя бы одно из этих неравенств строгое. При этом операция а на­зывается доминирующей , а операция b – доминируемой . Очевидно, что никакая доминируемая операция не может быть признана наилучшей . Следовательно, наилучшую операцию надо искать среди недоминируемых операций. Множество недоминируемых операций назы­вается множеством (областью) Парето или множеством оптимально­сти по Парето .

Для множества Парето справедливо утверждение: каждая из характе­ристик Е, r является однозначной функцией другой, т. е. на множестве Парето по од­ной характеристике операции можно однозначно определить другую.

Вернемся к анализу финансовых решений в условиях частичной неопределенности. Как показано в разделе 2.3, каждая операция характеризуется средним ожидаемым риском и средним ожидаемым доходом . Если ввести прямоугольную систему координат, на оси абсцисс которой откладывать значения , а на оси ординат – значения , то каждой операции будет соответствовать точка (, ) на координатной плоскости. Чем выше эта точка на плоскости, тем доходнее операция; чем правее точка, тем более рисковая операция. Следовательно, при поиске недоминируемых операций (множества Парето) нужно выбирать точки выше и левее. Таким образом, множество Парето для исходных данных примеров 2.6 и 2.7 состоит только из одной третьей операции.

Для определения лучшей операции в ряде случаев можно применять некоторую взвешивающую формулу, в которую характеристики и входят с определенными весами, и которая дает одно число, задающее лучшую операцию. Пусть, например, для операции i с характеристиками (, ) взвешивающая формула имеет вид f(i) = 3 - 2 , и наилучшая операция выбирается по максимуму величины f(i) . Эта взвешивающая формула означает, что ЛПР согласен на увеличение риска на три единицы, если доход операции увеличится при этом не менее, чем на две единицы. Таким образом, взвешивающая формула выражает отношение ЛПР к показателям дохода и риска.

Пример 2.9. Пусть исходные данные те же, что и в примерах 2.6 и 2.7, т. е. для матриц последствий и риска примера 2.1 известны вероятности вариантов развития реальной ситуации: p1 =1/2, p2=1/6, p3=1/6, p4=1/6. В этих условиях ЛПР согласен на увеличение риска на две единицы, если при этом доход операции увеличится не менее, чем на одну единицу. Определить для этого случая наилучшую операцию.


Решение. Взвешивающая формула имеет вид f(i) = 2 - . Используя результаты расчетов в примерах 2.6 и 2.7, находим:

f(1) = 2*29/6 – 20/6 = 6,33; f(2) = 2*25/6 – 4 = 4,33;

f(3) = 2*7 – 7/6 = 12,83; f(4) = 2*17/6 – 32/6 = 0,33

Следовательно, лучшей является третья операция, а худшей – четвертая.

Тема 3. Измерители и показатели финансовых рисков

Количественная оценка риска. Риск отдельной операции. Общие измерители риска.

В данной теме рассматриваются критерии и методы принятия решений в тех случаях, когда предполагается, что распределения вероятностей возможных исходов либо известны, либо они могут быть найдены, причем в последнем случае не всегда необходимо за­давать в явном виде плотность распределения.

3.1. Общеметодические подходы к количественной оценке риска

Риск - категория вероятностная, поэтому методы его количественной оцен­ки базируются на ряде важнейших понятий теории вероятностей и математической статистики. Так, главными инструментами статистического метода расчета риска являются:

1) математическое ожидание m, например, такой случайной величины, как результат финансовой операции k : m = Е {k };

2) дисперсия как характеристика степени вариации значений случайной величины k вокруг центра группирования m (напомним, что дисперсия – это математическое ожидание квадрата отклонения случайной величины от своего математического ожидания );

3) стандартное отклонение ;

4) коэффициент вариации , который имеет смысл риска на единицу среднего дохода.

Замечание. Для небольшого набора n значений – малой выборки! – дискретной случайной величины речь, строго говоря, идет лишь об оценках перечисленных измерителей риска .

Так, средним (ожидаемым) значением выборки, или выборочным аналогом математического ожидания , является величина , где р i – вероятность реализации значения случайной величины k . Если все значения равновероятны, то ожидаемое значение случайной выборки вычисляется по формуле .

Аналогично, дисперсия выборки (выборочная дисперсия ) определяется как среднеквадратичное отклонение в выборке: или

. В последнем случае выборочная дисперсия представляет собой смещенную оценку теоретической дисперсии . Поэтому предпочтительнее использовать несмещенную оценку дисперсии , которая задана формулой .

Очевидно, что оценка может быть рассчитана следующим образом или .

Ясно, что оценка коэффициента вариации принимает теперь вид .

В экономических системах в условиях риска принятие решений основывается чаще всего на одном из следующих критериев.

1. Ожидаемого значения (доходности, прибыли или расходов).

2. Выборочной дисперсии или стандартного (среднего квадратического) отклонения .

3. Комбинации ожидаемого значения и дисперсии или среднего квадратического отклонения выборки .

Замечание . Под случайной величиной k в каждой конкретной ситуации понимается соответствующий этой ситуации показатель, который обычно записывается в принятых обозначениях: mp доходность портфеля ценных бумаг , IRR – (Internal Rate of Return) внутренняя (норма) доходности и т. д.

Рассмотрим изложенную идею на конкретных примерах.

3.2. Распределения вероятностей и ожидаемая доходность

Как уже не раз говорилось, риск связан с вероятностью того, что фактическая доходность будет ниже ее ожидаемого значения. Поэтому распределения вероятностей являются основой для измерения риска проводимой операции. Однако, надо помнить, что получаемые при этом оценки носят вероятностный характер.

Пример 1 . Предположим, например, что Вы намерены инвестировать 100000 дол. сроком на один год. Альтернативные варианты инвестиций приведены в табл. 3.1.

Во-первых, это ГКО-ОФЗ со сроком погашения один год и став­кой дохода 8%, которые могут быть приобретены с дисконтом, т. е. по цене ниже номинала, а в момент погашения будет выплачена их номи­нальная стоимость.

Таблица 3.1

Оценка доходности по четырем инвестиционным альтернативам

Состояние

экономики

Вероятность

р i

Доходность инвестиций при данном состоянии экономики, %

корпоративные ценные бумаги

Глубокий спад

Незначительный спад

Стагнация

Незначительный подъем

Сильный подъем

Ожидаемая доходность

Примечание. Доходность, соответствующую различным состояниям экономики, следует рас­сматривать как интервал значений, а отдельные ее значения - как точки внутри этого интервала. Например, 10%-ная доходность облигации корпорации при незначительном спаде представляет со­бой наиболее вероятное значение доходности при данном состоянии экономики, а точечное значение используется для удобства расчетов.

Во-вторых, корпоративные ценные бумаги (голубые фишки), которые продаются по номиналу с купон­ной ставкой 9% (т. е. на 100000 дол. вложенного капитала можно получать 9000 дол. годовых) и сроком погашения 10 лет. Однако Вы собираетесь продать эти ценные бумаги в конце первого года. Следовательно, фактическая до­ходность будет зависеть от уровня процентных ставок на конец года. Этот уровень в свою очередь зависит от состояния экономики на конец года: быстрые темпы экономического развития, вероятно, вызовут повышение процентных ставок, что снизит рыночную стоимость голубых фишек; в случае эко­номического спада возможна противоположная ситуация.

В-третьих, проект капиталовложений 1, чистая стоимость которого составляет 100000 дол. Денежный поток в течение года равен нулю, все выплаты осуще­ствляются в конце года. Сумма этих выплат зависит от состояния экономики.

И, наконец, альтернативный проект капиталовложений 2, совпадающий по всем па­раметрам с проектом 1 и отличающийся от него лишь распределением вероят­ностей ожидаемых в конце года выплат .

Под распределением вероятностей , будем понимать множество вероятностей возможных исходов (в случае непрерывной случайной величины это была бы плотность распределения вероятностей). Именно в этом смысле следует истолковывать представленные в табл. 3.1 четыре распределения вероятностей, соответствующие четырем альтернативным вариантам инвестирования. Доходность по ГКО-ОФЗ точно известна. Она составляет 8% и не зависит от состояния эконо­мики.

Вопрос 1 . Можно ли риск по ГКО-ОФЗ безоговорочно считать равным нулю?

Ответ: а) да; б) думаю, что не все так однозначно, но затрудняюсь дать более полный ответ; в) нет.

Правильный ответ в).

При любом варианте ответа см. справку 1.

Справка 1 . Инвестиции в ГКО-ОФЗ являются безрисковыми только в том смысле, что их номинальная доходность не изменяется в течение данного периода времени. В то же время их реальная доходность содержит определенную долю риска, т. к. она зависит от фактических темпов роста инфляции в течение пери­ода владения данной ценной бумагой. Более того, ГКО могут представлять проблему для инвестора, который обладает портфелем ценных бумаг с целью получения непрерыв­ного дохода: когда истекает срок платежа по ГКО-ОФЗ, необходимо осуще­ствить реинвестирование денежных средств , и если процентные ставки снижаются, до­ход портфеля также уменьшится. Этот вид риска, который носит название риска нормы реинвестирования , не учитывается в нашем примере, так как период, в течение кото­рого инвестор владеет ГКО-ОФЗ, соответствует сроку их погашения. Наконец, отметим, что релевантная доходность любых инвестиций - это доходность после уплаты налогов, поэтому значения доходности, используемые для принятия решения, должны отражать доход за вычетом налогов.

По трем другим вариантам инвестирования реальные, или фактические, значения доходности не будут известны до окончания соответствующих периодов владения активами. Поскольку значения доходности не известны с полной определенно­стью, эти три вида инвестиций являются рисковыми .

Распределения вероятностей бывают дискретными или непрерывными . Дискретное распределение вероятностей имеет конечное число исходов; так, в табл. 3.1 приведены дискретные распределения вероятностей доходностей различных вариантов инвестирования. Доходность ГКО-ОФЗ принимает только одно возможное значение, тогда как каждая из трех оставшихся альтернатив имеет пять возможных исходов. Ка­ждому исходу поставлена в соответствие вероятность его появления. Например, вероятность того, что ГКО-ОФЗ будут иметь доходность 8%, равна 1.00, а вероятность того, что доходность корпоративных ценных бумаг составит 9%, равна 0.50.

Если умножить каждый исход на вероятность его появления, а затем сло­жить полученные результаты, мы получим средневзвешенную исходов. Весами служат соответствующие вероятности, а средневзвешенная представляет собой ожидаемое значение . Так как исходами являются внутренние нормы доходности (Internal Rate of Return, аббревиатура IRR), ожидаемое зна­чение - это ожидаемая норма доходности (Expected Rate of Return, аббревиатура ERR), которую можно представить в следующем виде:

ERR = IRRi, (3.1)

где IRRi, - i-й возможный исход; pi - вероятность появления i-го исхода; п - число возможных исходов.

Государственный комитет РФ по рыболовству

Федеральное государственное образовательное

Учреждение высшего профессионального образования

Камчатский государственный технический университет

Кафедра математики

Курсовая работа по дисциплине

«Математическая экономика»

На тему: «Риск и страхование.»

Введение…………………………………………………………..……………….....3

1.КЛАССИЧЕСКАЯ СХЕМА ОЦЕНКИ ФИНАНСОВЫХ ОПЕРАЦИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ …………….............................................................................4 1.1. Определение и сущность риска…………………………………..……………..…...4

1.2. Матрицы последствий и рисков…………………………………….……..……6

1.3.Анализ связанной группы решений в условиях полной неопределенности…………………………………………………...……………......7

1.4. Анализ связанной группы решений в условиях частичной неопределенности…………………………………………………………………..8

1.5. Оптимальность по Парето…………………………………………………….9

2. ХАРАКТЕРИСТИКИ ВЕРОЯТНОСТНЫХ ФИНАНСОВЫХ ОПЕРАЦИЙ……..…..…...12

2.1. Количественная оценка риска………………………………………………..12

2.2. Риск отдельной операции……………………………………………………..13 2.3. Некоторые общие измерители риска……………………………………….15

2.4. Риск разорения……………………………………………………………..…16

2.5. Показатели риска в виде отношений………………………………………..17

2.6. Кредитный риск……………………………………………………………….17

3. ОБЩИЕ МЕТОДЫ УМЕНЬШЕНИЯ РИСКОВ……………………………………….…….18

3.1. Диверсификация………………………………………………………………18

3.2. Хеджирование…………………………………………………………………21

3.3. Страхование…………………………………………………………………...22

3.4. Качественное управление рисками………………………………….……….24

Практическая часть……………………………………………………………...….27

Заключение………………………………………………………..………….…. ..29

Список литературы…………………………………………….……….……..….30

Приложения……………………………………………………….…………..…...31

ВВЕДЕНИЕ

Развитие мировых финансовых рынков, характеризующееся усилением процессов глобализации, интернационализации, либерализации, оказывает непосредственное влияние на всех участников мирового экономического пространства, основными членами которого являются крупные финансово-кредитные институты, производственные и торговые корпорации. Все участники мирового рынка непосредственно ощущают на себе влияние всех вышеперечисленных процессов и в своей деятельности должны учитывать новые тенденции развития финансовых рынков. Число рисков, возникающих в деятельности таких компаний, существенно увеличилось в последние годы. Это связано с появлением новых финансовых инструментов, активно используемых участниками рынка. Применение новых инструментов хотя и позволяет снизить принимаемые на себя риски, но также связано с определенными рисками для деятельности участников финансового рынка. Поэтому все большее значение для успешной деятельности компании приобретает в настоящее время осознание роли риска в деятельности компании и способность риск-менеджера адекватно и своевременно реагировать на сложившуюся ситуацию, принять правильное решение в отношении риска. Для этого необходимо использовать различные инструменты страхования и хеджирования от возможных потерь и убытков, набор которых в последние годы существенно расширился и включает как традиционные приемы страхования, так и методы хеджирования с использованием финансовых инструментов.

От того, насколько правильно будет выбран тот или иной инструмент, будет зависеть, в конечном счете, эффективность деятельности компании в целом.

Актуальность темы исследования предопределена также незавершенностью разработки теоретической основы и классификации страхования финансовых рисков и выявления его особенностей в России.

Глава 1. КЛАССИЧЕСКАЯ СХЕМА ОЦЕНКИ ФИНАНСОВЫХ

ОПЕРАЦИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ

Риск одно из важнейших понятий, сопутствующих любой активной деятельности человека. Вместе с тем это одно из самых неясных, многозначных и запутанных понятий. Однако, несмотря на его неясность, многозначность и запутанность, во многих ситуациях суть риска очень хорошо понимается и воспринимается. Эти же качества риска являются серьезной преградой для его количественной оценки, которая во многих случаях необходима и для развития теории и на практике.

Рассмотрим классическую схему принятия решений в условиях неопределенности.

1.1. Определение и сущность риска

Напомним, что финансовой называется операция, начальное и конечное состояния которой имеют денежную оценку и цель проведения которой заключается в максимизации дохода разности между конечной и начальной

оценками (или какого-нибудь другого подобного показателя).

Почти всегда финансовые операции проводятся в условиях неопределенности и потому их результат невозможно предсказать заранее. Поэтому финансовые операции рискованны : при их проведении возможны как прибыль, так и убыток (или не очень большая прибыль по сравнению с той, на что надеялись проводившие эту операцию).

Проводящий операцию (принимающий решение) называется ЛПР Лицо ,

принимающее решение . Естественно, ЛПР заинтересовано в успехе операции и является за нее ответственным (иногда только перед самим собой). Во многих случаях ЛПР это инвестор, вкладывающий деньги в банк, в какую то финансовую операцию, покупающий ценные бумаги и т.п.

Определение. Операция называется рискованной , если она может иметь несколько исходов, не равноценных для ЛПР.

Пример 1 .

Рассмотрим три операции с одним и тем же множеством двух исходов

альтернатив A , В , которые характеризуют доходы, получаемые ЛПР. Все три

операции рискованные. Понятно, что рискованными являются первая и вторая

операции, так как в результате каждой операции возможны убытки.

Но почему должна быть признана рискованной третья операция? Ведь она сулит только положительные доходы ЛПР? Рассматривая возможные исходы третьей операции, видим, что можем получить доход в размере 20 единиц, поэтому возможность получения дохода в 15 единиц рассматривается как неудача, как риск недобрать 5 единиц дохода. Итак, понятие риска обязательно предполагает рискующего того, к кому этот риск относится, кто озабочен результатом операции. Сам риск возникает, только если операция может окончиться исходами, не равноценными для него, несмотря на, возможно, все его усилия по управлению этой операцией.

Итак, в условиях неопределенности операция приобретает еще одну характеристику риск. Как оценить операцию, с точки зрения ее доходности и риска? На этот вопрос на так просто ответить, главным образом из-за многогранности понятия риска. Существует несколько разных способов такой оценки. Рассмотрим один из таких подходов.

1.2. Матрицы последствий и рисков

Допустим, рассматривается вопрос о проведении финансовой операции. Неясно, чем она может закончиться. В связи с этим проводится анализ нескольких возможных решений и их последствий. Так приходим к следующей общей схеме принятия решений (в том числе финансовых) в условиях неопределенности.

Предположим, что ЛПР рассматривает несколько возможных решений

i =1, …,n . Ситуация неопределенна, понятно лишь, что наличествует какой то из вариантов j =1,….,n . Если будет принято i– е решение, а ситуация есть j– я, то фирма, возглавляемая ЛПР, получит доход q ij . Матрица Q =(q ij) называется матрицей последствий (возможных решений). Допустим, мы хотим оценить риск, который несет i -е решение. Нам неизвестна реальная ситуация. Но если бы мы её знали, то выбрали бы наилучшее решение, т.е. приносящее наибольший доход. Если ситуация j -я, то было бы принято решение, дающее доход q i =max q ij . Значит, принимая i -е решение, мы рискуем получить не q j , а только q ij , т.е. принятие i -го решения несет риск не добрать r ij =q j –q ij называется матрицей рисков .

Пример 2.

Пусть матрица последствий есть

Составим матрицу рисков. Имеем q 1 =max q i1 =8, q 2 =5, q 3 =8, q 4 =12. Следовательно, матрица рисков есть

1.3. Анализ связанной группы решений в условиях полной неопределенности

Ситуация полной неопределенности характеризуется отсутствием какой бы то ни было дополнительной информации (например, о вероятностях тех или иных вариантов реальной ситуации). Какие же существуют правила рекомендации по принятию решений в этой ситуации?

Правило Вальда (правило крайнего пессимизма).

Рассматривая i -е решение, будем полагать, что на самом деле ситуация складывается самая плохая, т.е. приносящая самый малый доход: a i =min q a 0 с наибольшим a i0 . Итак, правило Вальда рекомендует принять решение i 0 такое, что a i0 =max a i =max(min q ij).Так, в примере 2 имеем a 1 =2, a 2 =2, a 3 =3, a 4 = 1. Теперь из чисел 2, 2, 3, 1 находим максимальное - 3. Значит, правило Вальда рекомендует принять 3-е решение.

Правило Сэвиджа (правило минимального риска).

При применении этого правила анализируется матрица рисков R =(r ij). Рассматривая i -е решение, будем полагать, что на самом деле складывается ситуация максимального риска b i =max r ij . Но теперь выберем решение i 0 с наименьшим b i0 . Итак, правило Сэвиджа рекомендует принять решение i 0 такое, что b i0 =min b i =min(max r ij).Так, в примере 2 имеем b 1 =8, b 2 =6, b 3 =5, b 4 =7. Теперь из чисел 8, 6, 5, 7 находим минимальное – 5.

Правило Гурвица (взвешивающее пессимистический и оптимистический подходы к ситуации).

Принимается решение i, котором достигается максимум

{λ min q ij +(1 λ max q ij)},

где 0≤λ ≤1. Значение λ выбирается из субъективных соображений. Если λ приближается к 1, то правило Гурвица приближается к правилу Вальда, при приближении λ к 0 правило Гурвица приближается к правилу «розового оптимизма» (догадайтесь сами, что это значит). В примере 2 при λ=1/2 правило Гурвица рекомендует второе решение.

1.4. Анализ связанной группы решений в условиях частичной неопределенности

Предположим, что в рассматриваемой схеме известны вероятности р j того, что реальная ситуация развивается по варианту j . Именно такое положение называется частичной неопределенностью. Как здесь принимать решение? Можно выбрать одно из следующих правил.

Правило максимизации среднего ожидаемого дохода.

Доход, получаемый фирмой при реализации i -го решения, является случайной величиной Q i с рядом распределения. Математическое ожидание М [Q i ] и есть средний ожидаемый доход, обозначаемый также Q i . Итак, правило рекомендует принять решение, приносящее максимальный средний ожидаемый доход. Предположим, что в схеме примера 2 вероятности есть 1/2, 1/6, 1/6, 1/6.

Тогда Q 1 =29/6, Q 2 =25/6, Q 3 =7, Q 4 =17/6. Максимальный средний ожидаемый доход равен 7 и соответствует третьему решению.

Правило минимизации среднего ожидаемого риска.

Риск фирмы при реализации i -го решения является случайной величиной R i с рядом распределения

Математическое ожидание M [R i ] и есть средний ожидаемый риск, обозначаемый также R i . Правило рекомендует принять решение, влекущее минимальный средний ожидаемый риск. Вычислим средние ожидаемые риски при указанных выше вероятностях. Получаем R 1 =20/6, R 2 =4, R 3 =7/6, R 4 =32/6. Минимальный средний ожидаемый риск равен 7/6 и соответствует третьему решению.

Замечание. Отличие частичной (вероятностной) неопределенности от полной неопределенности очень существенно. Конечно, принятие решений по правилам Вальда, Сэвиджа, Гурвица никто не считает окончательными, самыми лучшими. Но когда мы начинаем оценивать вероятность варианта, это уже предполагает повторяемость рассматриваемой схемы принятия решений: это уже было в прошлом, или это будет в будущем, или это повторяется где-то в пространстве, например, в филиалах фирмы.

1.5. Оптимальность по Парето

Итак, при попытке выбрать наилучшее решение мы столкнулись в предыдущем параграфе с тем, что каждое решение имеет две характеристики средний ожидаемый доход и средний ожидаемый риск. Теперь имеем оптимизационную двухкритериальную задачу по выбору наилучшего решения.

Существует несколько способов постановки таких оптимизационных задач.

Рассмотрим такую задачу в общем виде. Пусть А - некоторое множество операций, каждая операция а имеет две числовые характеристики Е (а ), r (а ) (эффективность и риск, например) и разные операции обязательно различаются хотя бы одной характеристикой. При выборе наилучшей операции желательно, чтобы Е было больше, а r меньше.

Будем говорить, что операция а доминирует операцию b, и обозначать а >b, если Е (а )≥Е (b ) и r (а )≤r (b ) и хотя бы одно из этих неравенств, строгое. При этом операция а называется доминирующей , а операция b - доминируемой . Ясно, что ни при каком разумном выборе наилучшей, операции доминируемая операция не может быть признана таковой. Следовательно, наилучшую операцию надо искать среди недоминируемых операций. Множество этих операций называется множеством Парето или множеством оптимальности по Парето .

Имеет место чрезвычайно важное утверждение.

Утверждение.

На множестве Парето каждая из характеристик Е , r - (однозначная) функция другой. Другими словами, если операция принадлежит множеству Парето, то по одной ее характеристике можно однозначно определить другую.

Доказательство. Пусть а ,b - две операции из множества Парето, тогда r (а ) и r (b ) числа. Предположим, что r (а )≤r (b ), тогда Е (а ) не может быть равно Е (b ), так как обе точки а , b принадлежат множеству Парето. Доказано, что по характеристике r E . Так же просто доказывается, что по характеристике Е можно определить характеристику r .

Продолжим анализ приведенного в § 10.2 примера. Рассмотрим графическую иллюстрацию. Каждую операцию (решение) (R, Q ) отметим как точку на плоскости доход откладываем вверх по вертикали, а риск вправо по горизонтали (рис. 10.1). Получили четыре точки и продолжаем анализ примера 2.

Чем выше точка (R, Q ), тем более доходная операция, чем точка правее, тем более она рисковая. Значит, нужно выбирать точку выше и левее. В нашем случае множество Парето состоит только из одной третьей операции.

Для нахождения лучшей операции иногда применяют подходящую взвешивающую формулу, которая для операции Q с характеристиками (R, Q ) даёт одно число, по которому и определяют лучшую операцию. Например, пусть взвешивающая формула есть f (Q )=2Q–R . Тогда для операций (решений) примера 2 имеем: f (Q 1)=2*29/6 20/6=6,33; f (Q 2)=4,33; f (Q 3)=12,83; f (Q 4)=0,33. Видно, что третья операция – лучшая, а четвертая худшая.

Глава 2. ХАРАКТЕРИСТИКИ ВЕРОЯТНОСТНЫХ ФИНАНСОВЫХ

ОПЕРАЦИЙ

Финансовая операция называется вероятностной , если существует вероятность каждого ее исхода. Прибыль такой операции разность конечной и начальной денежных ее оценок является случайной величиной. Для такой операции удается ввести количественную оценку риска, согласующуюся с нашей интуицией.

2.1. Количественная оценка риска

В предыдущей главе дано определение рискованной операции, как имеющей, по крайней мере, два исхода, не равноценных в системе предпочтений ЛПР. В контексте данной главы вместо ЛПР можно, употреблять также термин «инвестор» или какой-либо подобный, отражающий заинтересованность проводящего операцию (возможно, пассивно) в ее успехе.

При исследовании риска операции встречаемся с фундаментальным утверждением.

Утверждение.

Количественная оценка риска операции возможна только при вероятностной характеристике множества исходов операции.

Пример 1.

Рассмотрим две вероятностные операции:

Несомненно, риск первой операции меньше риска второй операции. Что же касается того, какую операцию выберет ЛПР, это зависит от его склонности к риску (подобные вопросы подробно рассмотрены в дополнении к ч. 2).

2.2. Риск отдельной операции

Так как мы хотим количественно оценить рискованность операции, а это невозможно сделать без вероятностной характеристики операции, то ее исходам припишем вероятности и оценим каждый исход доходом, который ЛПР получает при этом исходе. В итоге получим случайную величину Q, которую естественно назвать случайным доходом операции, или просто случайным доходом . Пока ограничимся дискретной случайной величиной (д.с.в.):

где q j - доход, а р j вероятность этого дохода.

Операцию и представляющую ее случайную величину случайный доход будем отождествлять при необходимости, выбирая из этих двух терминов более удобный в конкретной ситуации.

Теперь можно применить аппарат теории вероятностей и найти следующие характеристики операции.

Средний ожидаемый доход математическое ожидание с.в. Q , т.е. М [Q ]=q 1 p 1 +…+q n p n , обозначается еще m Q , Q, употребляется также название эффективность операции .

Дисперсия операции - дисперсия с.в. Q , т.е. D [Q ]=М [(Q - m Q) 2 ], обозначается также D Q .

Среднее квадратическое отклонение с.в. Q , т.е. [Q ]=√(D [E ]), обозначается

также σ Q .

Отметим, что средний ожидаемый доход, или эффективность операции, как и среднее квадратическое отклонение, измеряется в тех же единицах, что и доход.

Напомним фундаментальный смысл математического ожидания с.в.

Среднее арифметическое значений, принятых с.в. в длинной серии опытов, примерно равно ее математическому ожиданию. Все более признанным становится оценка рискованности всей операции посредством среднего квадратического отклонения случайной величины дохода Q , т.е. посредством σ Q . В данной книге это основная количественная оценка.

Итак, риском операции называется число σ Q среднее квадратическое отклонение случайного дохода операции Q . Обозначается также r Q .

Пример 2.

Найдем риски первой и второй операций из примера 1:

Сначала вычисляем математическое ожидание с.в. Q 1:

т 1 = 5*0,01+25*0,99=24,7. Теперь вычислим дисперсию по формуле D 1 =M [Q 1 2 ]-m 1 2 . Имеем М [Q 1 2 ]= 25*0,01+625*0,99=619. Значит, D 1 =619 (24,7)2=8,91 и окончательно r 1 =2,98.

Аналогичные вычисления для второй операции дают m 2 =20; r 2 =5. Как и «полагала интуиция», первая операция менее рискованная.

Предлагаемая количественная оценка риска вполне согласуется с интуитивным пониманием риска как степени разбросанности исходов операции ведь дисперсия и среднее квадратическое отклонение (квадратный корень из дисперсии) и суть меры такой разбросанности.

Другие измерители риска.

По нашему мнению, среднее квадратическое отклонение является наилучшим измерителем риска отдельной операции. В гл. 1 рассмотрены классическая схема принятия решений в условиях неопределенности и оценки риска в этой схеме. Полезно познакомиться: с другими измерителями риска. В большинстве случаев эти измерители просто вероятности нежелательных событий.

2.3. Некоторые общие измерители риска

Пусть известна функция распределения F случайного дохода операции Q. Зная ее, можно придать смысл следующим вопросам и ответить на них.

1. Какова вероятность того, что доход операции будет менее заданного s . Можно спросить по другому: каков риск получения дохода менее заданного? Ответ: F (s ).

2. Какова вероятность того, что операция окажется неуспешной, т.е. ее доход будет меньше среднего ожидаемого дохода m ?

Ответ: F (m ) .

3. Какова вероятность убытков и каков их средний ожидаемый размер? Или каков, риск убытков и их оценка?

4. Каково отношение средних ожидаемых убытков к среднему ожидаемому доходу? Чем меньше это отношение, тем меньше риск разорения, если ЛПР вложил в операцию все свои средства.

При анализе операций ЛПР желает иметь доход побольше, а риск поменьше. Такие оптимизационные задачи называют двухкритериальными. При их анализе два критерия – доход и риск часто «свертывают» в один критерий. Так возникает, например, понятие относительного риска операции . Дело в том, что одно и то же значение среднего квадратического отклонения σ Q , которое измеряет риск операции, воспринимается по-разному в зависимости от величины среднего ожидаемого дохода т Q , поэтому величину σ Q / т Q иногда называют относительным риском операции. Такую меру риска можно трактовать как свертку двухкритериальной задачи

σ Q →min,

т Q →max,

т.е. максимизировать средний ожидаемый доход при одновременной минимизации риска.

2.4. Риск разорения

Так называется вероятность столь больших потерь, которые ЛПР не может компенсировать и которые, следовательно, ведут к его разорению.

Пример 3.

Пусть случайный доход операции Q имеет следующий ряд распределения, и потери 35 или более ведут к разорению ЛПР. Следовательно, риск разорения в результате данной операции равен 0,8;

Серьезность риска разорения оценивается именно величиной соответствующей вероятности. Если эта вероятность очень мала, то ею часто пренебрегают.

2.5. Показатели риска в виде отношений.

Если средства ЛПР равны С , то при превышении убытков У над С возникает реальный риск разорения. Для предотвращения этого отношение К 1 = У / С , называемое коэффициентом риска , ограничивают специальным числом ξ 1 . Операции, для которых этот коэффициент превышает ξ1, считают особо рискованными. Часто учитывают также вероятность р убытков У и тогда рассматривают коэффициент риска К 2 = р Y/ С , который ограничивают другим числом ξ 2 (ясно, что ξ 2 ≤ ξ 1). В финансовом менеджменте чаще применяют обратные отношения С / У и С /(рУ ), которые называют коэффициентами покрытия рисков и которые ограничиваются снизу числами 1/ ξ 1 и 1/ ξ 2 .

Именно такой смысл имеет так называемый коэффициент Кука, равный отношению:

Коэффициент Кука используется банками и другими финансовыми компаниями. В роли весов при «взвешивании» выступают вероятности риски потери соответствующей актива.

2.6. Кредитный риск

Так называется вероятность невозврата в срок взятого кредита.

Пример 4.

Статистика запросов кредитов такова: 10% государственные органы, 30% другие банки и остальные физические лица. Вероятности невозврата взятого кредита соответственно таковы: 0,01; 0,05 и 0,2. Найти вероятность невозврата очередного запроса на кредит. Начальнику кредитного отдела доложили, что получено сообщение о невозврате кредита, но в факсовом сообщении имя клиента было плохо пропечатано. Какова вероятность, что данный кредит не возвращает какой то банк?

Решение. Вероятность невозврата найдем по формуле полной вероятности. Пусть Н 1 - запрос поступил от госоргана, Н 2 от банка, Н 3 от физического лица и А - невозврат рассматриваемого кредита. Тогда

Р (А )= Р (Н 1)Р H1 А + Р (Н 2)Р H2 А + Р (Н з)P H3 А = 0,1*0,01+0,3*0,05+0,6*0,2=0,136.

Вторую вероятность найдем по формуле Байеса. Имеем

Р A Н 2 =Р (Н 2)Р H2 А / Р (А )= 0,015/0,136=15/136≈1/9.

Как в реальности определяют все приведенные в этом примере данные, например, условные вероятности Р H1 А ? По частоте невозврата кредита для соответствующей группы клиентов. Пусть физические лица взяли всего 1000 кредитов и 200 не вернули. Значит, соответствующая вероятность Р H3 А оценивается как 0,2. Соответствующие данные 1000 и 200 берутся из информационной базы данных банка.

Глава 3. ОБЩИЕ МЕТОДЫ УМЕНЬШЕНИЯ РИСКОВ

Как правило, риск стараются уменьшить. Для этого существует немало методов. Большая группа таких методов связана с подбором других операций. Таких, чтобы суммарная операция имела меньший риск.

3.1. Диверсификация

Напомним, что дисперсия суммы некоррелированных случайных величин равна сумме дисперсий. Из этого вытекает следующее утверждение, лежащее в основе метода диверсификации.

Утверждение 1.

Пусть О 1 ,...,О n некоррелированные операции с эффективностями е 1 ,..., е n и рисками r 1 ,...,r 2 . Тогда операция «среднее арифметическое» О =(О 1 +...+O n)/ п имеет эффективность е =(e 1 +...+e n)/n и риск r =√(r 1 2 +…r 2 n)/n .

Доказательство этого утверждения простое упражнение на свойства математического ожидания и дисперсии.

Следствие 1.

Пусть операции некоррелированы и а≤ e i и b r i ≤c с для всех i =1,..,n . Тогда эффективность операции «среднее арифметическое» не меньше а (т.е. наименьшей из эффективностей операций), а риск удовлетворяет неравенству b n r c n и, таким образом, при увеличении n уменьшается. Итак, при увеличении числа некоррелированных операций их среднее арифметическое имеет эффективность из промежутка эффективностей этих операций, а риск однозначно уменьшается.

Этот вывод называется эффектом диверсификации (разнообразия) и представляет собой в сущности единственно разумное правило работы на финансовом и других рынках. Этот же эффект воплощен в народной мудрости «не клади все яйца в одну корзину». Принцип диверсификации гласит, что нужно проводить разнообразные, не связанные друг с другом операции, тогда эффективность окажется усредненной, а риск однозначно уменьшится.

При применении этого правила нужно быть осторожным. Так, нельзя отказаться от некоррелированности операций.

Предложение 2.

Предположим, что среди операций есть ведущая, с которой все остальные находятся в положительной корреляционной связи. Тогда риск операции «среднее арифметическое» не уменьшается при увеличении числа суммируемых операций.

Действительно, для простоты примем более сильное предположение, именно, что все операции О i ; i =1,...,n , просто копируют операцию O 1 в каких то масштабах, т.е. O i =k i O 1 и все коэффициенты пропорциональности k i положительны. Тогда операция «среднее арифметическое» О =(O 1 +...+O n)/n есть просто операция O 1 в масштабе

и риск этой операции

Поэтому, если операции примерно одинаковы по масштабности, т.е. k i ≈1, то и

Мы видим, что риск операции «среднее арифметическое» не уменьшается при увеличении числа операций.

3.2. Хеджирование

В эффекте диверсификации ЛПР составлял новую операцию из нескольких, имеющихся в его распоряжении. При хеджировании (от англ. hedge - изгородь) ЛПР подбирает или даже специально конструирует новые операции, чтобы, проводя их совместно с основной, уменьшить риск.

Пример 1.

По контракту российская фирма через полгода должна получить крупный платеж от украинской компании. Платеж равен 100 000 гривен (примерно 600 тыс. руб.) и будет произведен, именно в гривнах. У российской фирмы, есть опасения, что за эти полгода курс гривны упадет по отношению к российскому рублю. Фирма хочет подстраховаться от такого падения и заключает форвардный контракт с одним из украинских банков на продажу тому 100 000 гривен по курсу 6 руб. за гривну. Таким образом, что бы ни произошло за это время с курсом рубль гривна, российская фирма не понесет из за этого убытков.

В этом и заключается суть хеджирования. При диверсификации наибольшую ценность представляли независимые (или некоррелированные) операции. При хеджировании подбираются операции, жестко связанные с основной, но, так сказать, другого знака, говоря более точно, отрицательно коррелированные с основной операцией.

Действительно, пусть O 1 основная операция, ее риск r 1 , O 2 некоторая дополнительная операция, ее риск r 2 , О - операция сумма, тогда дисперсия этой операции D =r 1 2 +2k 12 r 1 r 2 +r 2 2 , где k - коэффициент корреляции эффективностей основной и дополнительной операций. Эта дисперсия может быть меньше дисперсии основной операции, только если этот коэффициент корреляции отрицателен (точнее: должно быть 2k 12 r 1 r 2 +r 2 2 <0, т.е. k 1 2 <–r 2 /(2r 1)).

Пример 2.

Пусть ЛПР решает проводить операцию O 1 .

Ему советуют провести одновременно операцию S , жестко связанную с О . В сущности обе операции надо изобразить с одним и тем же множеством исходов.

Обозначим суммарную операцию через О , эта операция есть сумма операций O 1 и S . Вычислим характеристики операций:

M [O 1 ]=5, D [O 1 ]=225, r 1 =15;

M [S ]=0, D [S ]=25;

M [O ]=5, D [O ]=100, r =10.

Средняя ожидаемая эффективность операции осталась неизменной, а риск уменьшился из-за сильной отрицательной коррелированности дополнительной операции S по отношению к основной операции.

Конечно, на практике не так легко подобрать дополнительную операцию, отрицательно коррелированную с основной, да еще с нулевой эффективностью. Обычно допускается небольшая отрицательная эффективность дополнительной операции и из-за этого эффективность суммарной операции становится меньше, чем у основной. Насколько допускается уменьшение эффективности на единицу уменьшения риска зависит от отношения ЛПР к риску.

3.3. Страхование

Можно рассматривать страхование как один из видов хеджирования. Поясним некоторые термины.

Страхователь (или застрахованный) тот, кто страхуется.

Страховщик - тот, кто страхует.

Страховая сумма - сумма денежных средств, на которую застраховано имущество, жизнь, здоровье страхователя. Эта сумма выплачивается страховщиком страхователю при наступлении страхового случая. Выплата страховой суммы называется страховым возмещением .

Страховой платеж выплачивается страхователем страховщику.

Обозначим страховую сумму ω , страховой платеж s , вероятность страхового случая р . Предположим, что застрахованное имущество оценивается в z. По правилам страхования ω≤ z.

Таким образом, можно предложить следующую схему:

Таким образом, страхование представляется выгоднейшим мероприятием с точки зрения уменьшения риска, если бы не страховой платеж. Иногда страховой платеж составляет заметную часть страховой суммы и представляет собой солидную сумму.

3.4. Качественное управление рисками

Риск столь сложное понятие, что весьма часто невозможна его количественная оценка. Поэтому широко развиты методы управления риском качественного характера, без количественной оценки. К таким относятся многие банковские риски. Наиболее важные из них это кредитный риск и риски неликвидности и неплатежеспособности.

1. Кредитный риск и способы его уменьшения . При выдаче кредита (или ссуды) всегда есть опасение, что клиент не вернет кредит. Предотвращение невозврата, уменьшение риска невозврата кредитов это важнейшая задача кредитного отдела банка. Какие же существуют способы уменьшения риска невозврата кредита.

Отдел должен постоянно систематизировать и обобщать информацию по выданным кредитам и их возвращению. Информация по выданным кредитам должна быть систематизирована по величине выданных кредитов, должна быть построена классификация клиентов, которые взяли кредит.

Отдел (банк в целом) должен вести так называемую кредитную историю, своих клиентов, в том, числе и потенциальных (т.е. когда, где, какие кредиты брал и как их возвращал клиент). Пока у нас в стране большинство клиентов не имеет своей кредитной истории.

Есть различные способы обеспечения кредита, например, клиент отдает что-то в залог и если не возвращает кредит, то банк становится собственником залога;

В банке должна быть четкая инструкция по выдаче кредита (кому какой кредит можно выдать и на какой срок);

Должны быть установлены четкие полномочия по выдаче кредита. Скажем, рядовой сотрудник отдела может выдать кредит не более $1000, кредиты до $10000 может выдать начальник отдела, свыше $10 000, но не более $100 000, может выдать вице-президент по финансам и кредиты свыше $100 000 выдает только совет директоров (читайте роман А. Хейли «Менялы»);

Для выдачи особо больших и опасных кредитов объединяются несколько банков и сообща выдают этот кредит;

Существуют страховые компании, которые страхуют невозврат кредита (но есть точка зрения, что невозврат кредита не подлежит страхованию это риск самого банка);

Существуют внешние ограничения по выдаче кредитов (например, установленные Центральным банком); скажем, не разрешается выдавать очень крупный кредит одному клиенту;

2. Риски неликвидности , неплатежеспособности и способы их уменьшения . Говорят, что средства банка достаточно ликвидны, если банк способен быстро и без особых для себя потерь обеспечить выплату своим клиентам денежных средств, которые они доверили банку на кратковременной основе. Риск неликвидности это и есть риск не справиться с этим. Впрочем, этот риск лишь для краткости назван так, полное его название риск несбалансированности баланса в части ликвидности .

Все активы банка по их ликвидности делятся на три группы:

1) первоклассные ликвидные средства (кассовая наличность, средства банка на корреспондентском счете в Центробанке, государственные ценные бумаги, векселя крупных надежных компаний;

2) ликвидные средства (ожидаемые краткосрочные платежи банку, некоторые виды ценных бумаг, некоторые материальные активы, которые могут быть быстро и без больших потерь проданы и т.п.);

3) неликвидные средства (просроченные кредиты и ненадежные долги, многие материальные активы банка, прежде всего здания и сооружения).

При анализе риска неликвидности учитываются в первую очередь первоклассные ликвидные средства.

Говорят, что банк платежеспособен, если способен расплатиться со всеми своими клиентами, но, возможно, для этого придется провести какие-нибудь крупные и длительные операции, вплоть до продажи оборудования, зданий, принадлежащих банку, и т.д. Риск неплатежеспособности возникает, когда неясно, сумеет ли банк расплатиться.

Платежеспособность банка зависит от очень многих факторов. Центральный банк устанавливает ряд условий, в которые банки должны выполнять для поддержания своей платежеспособности. Самые важные из них: ограничение обязательств банка; рефинансирование банков Центральным банком; резервирование части средств банка на корреспондентском счете в Центральном банке.

Риск неликвидности ведет к возможным излишним потерям банка: чтобы расплатиться с клиентом, банку, возможно, придется одолжить деньги у других банков по более высокой процентной ставке, чем в обычных условиях. Риск неплатежеспособности вполне может привести к банкротству банка.

Практическая часть

Предположим, ЛПР имеет возможность составить операцию из четырех некоррелированных операций, эффективности и риски которых даны в таблице.

Рассмотрим несколько вариантов составления операций из этих операций с равными весами.

1. Операция составлена только из 1-й и 2-й операций. Тогда e 12 =(3+5)/2=4;

r 12 = (2 2 +4 2)/2≈2,24

2. Операция составлена только из 1-й, 2-й и 3-й операций.

Тогда e 123 =(3+5+8)/3=5,3; r 123 =√(2 2 +4 2 +6 2)/3≈2,49.

3. Операция составлена из всех четырех операций. Тогда

e 1 4 =(3+5+8+10)/4=6,5; r 1 4 =√(2 2 +4 2 +6 2 +12 2)/4≈ 3,54.

Видно, что при составлении операции из всё большего числа операций риск растёт весьма незначительно, оставаясь близко к нижней границе рисков составляющих операций, а эффективность каждый раз равна среднему арифметическому составляющих эффективностей.

Принцип диверсификации применяется не только для усреднения операций, проводимых одновременно, но в разных местах (усреднение в пространстве), но и проводимых последовательно во времени, например, при повторении одной операции во времени (усреднение во времени). Например, вполне разумной является стратегия покупки акций какой-нибудь стабильно работающей компании 20-го января каждого года. Неизбежные колебания курса акций этой компании благодаря этой процедуре усредняются и в этом проявляется эффект диверсификации.

Теоретически эффект диверсификации только положителен эффективность усредняется, а риск уменьшается. Однако усилия по проведению большого числа операций, по отслеживанию их результатов могут, конечно, свести на нет все плюсы от диверсификации.

ЗАКЛЮЧЕНИЕ

Данная курсовая работа рассматривает теоретические и практические вопросы и проблемы рисков.

В первой главе рассматриваются классическая схема оценки финансовых операций в условиях неопределенности.

Во второй главе сделан обзор характеристик вероятностных финансовых операций. Под финансовыми рисками понимаются кредитные, коммерческие, риски биржевых операций и риск неправомерного применения финансовых санкций государственными налоговыми инспекциями.

В третьей главе показаны общие методы уменьшения рисков. Приведены примеры качественного управления рисками.

Список литературы

1.Малыхин В.И. Финансовая математика: Учеб. пособие для вузов. М.: ЮНИТИ ДАНА, 1999. 247 с.

2. Страхование: принципы и практика/ Составитель Дэвид Бланд: пер. с англ.–М.: Финансы и статистика, 2000.–416с.

3. Гвозденко А.А. Финансово-экономические методы страхования: Учебник.–М.: Финансы и статистика, 2000.–184с.

4. Сербиновский Б.Ю., Гарькуша В.Н. Страховое дело: Учебное пособие для вузов. Серия “Учебники, учебные пособия” Ростов н/Д: “Феникс”, 2000–384 с.

Лабораторная работа 2 «Эксплуатация и диагностика опор контактной сети»

Цель работы: ознакомиться со способами определения коррозионного состояния железобетонной опоры контактной сети

Порядок выполнения работы :

1) Изучить и составить краткий отчет о работе прибора АДО-3.

2) Изучить и решить задачу по методу минимального риска (согласно вариантам (по номеру в журнале)

3) Рассмотреть спец.вопрос о способах диагностики состояния опор (за исключением угла наклона).

П.п. 1 и 3 выполняются бригадой в количестве 5 человек.

П.2 выполняется индивидуально каждым студентом.

В результате необходимо сделать индивидуальный электронный отчет и прикрепить его в blackboard.

Метод минимального риска

При наличии неопределенности принятия решения применяют специальные методы, учитывающие вероятностную природу событий. Они позволяют назначать границу поля допуска параметра для принятия решения о диагностировании.

Пусть производится диагностика состояния железобетонной опоры вибрационным методом.

Вибрационный метод (рис 2.1) основан на зависимости декремента затухающих колебаний опоры от степени коррозии арматуры. Опора приводится в колебательное движение, например, при помощи троса оттяжки и сбрасывающего устройства. Сбрасывающее устройство калибруется на заданное усилие. На опоре устанавливается датчик колебаний, например акселерометр. Декремент затухающих колебаний определяется как логарифм отношения амплитуд колебаний:

где А 2 и А 7 – амплитуды, соответственно второго и седьмого колебаний.

а) схема б) результат измерений

Рисунок 2.1 – Вибрационный метод

АДО-2М измеряет амплитуды колебаний 0,01 ... 2,0 мм частотой 1 ... 3 Гц.

Чем больше степень коррозии, тем быстрее затухают колебания. Недостатком метода является то, что декремент колебаний в большой степени зависит от параметров грунта, способа заделки опоры, отклонений технологии изготовления опоры, качества бетона. Заметное влияние коррозии проявляется лишь при значительном развитии процесса.

Задача стоит в выборе значения Хо параметра Х таким образом, чтобы при Х>Хо принимали решение о замене опоры, а при Х<Хо не проводили управляющего воздействия.

. (2.2)

Декремент колебаний опоры зависит не только от степени коррозии, но и от множества других факторов. Поэтому можно говорить о некоторой области, в которой может находиться величина декремента. Распределения декремента колебаний для исправной и прокорродировавшей опоры показано на рис. 2.2.

Рисунок 2.2 - Плотность вероятности декремента колебаний опоры

Существенно, что области исправного D 1 и коррозионного D 2 состояний пересекаются и потому невозможно выбрать x 0 так, чтобы правило (2.2) не давало бы ошибочных решений.

Ошибка первого рода - принятие решения о наличии коррозии (дефекта), когда в действительности опора (система) находится в исправном состоянии.

Ошибка второго рода - принятие решения об исправном состоянии, тогда как опора (система) прокорродировала (содержит дефект).

Вероятность ошибки первого рода равна произведению вероятностей двух событий: вероятности наличия исправного состояния и вероятности того, что x > x 0 при исправном состоянии:

, (2.3)

где P(D 1) = P 1 - априорная вероятность нахождения опоры в исправном состоянии (считается известной на основании предварительных статистических данных).

Вероятность ошибки второго рода:

, (2.4)

Если известны цены ошибок первого и второго рода c и y соответственно, то можно записать уравнение для среднего риска:

Найдем граничное значение x 0 для правила (2.5) из условия минимума среднего риска. Подставляя (2.6) и (2.7) в (2.8) дифференцируя R(x) по x 0 , приравняем производную нулю:

= 0, (2.6)

. (2.7)

Это условие для нахождения двух экстремумов - максимума и минимума. Для существования минимума в точке x = x 0 вторая производная должна быть положительной:

. (2.8)

Это приводит к следующему условию:

. (2.9)

Если распределения f(x/D 1) и f(x/D 2) одномодальные, то при:

(2.10)

условие (4.58) выполняется.

Если плотности распределений параметров исправной и неисправной (системы) подчинены закону Гаусса, то они имеют вид:

, (2.11)

. (2.12)

Условия (2.7) в этом случае принимает вид:

. (2.13)

После преобразования и логарифмирования получаем квадратное уравнение

, (2.14)

b = ;

c = .

Решая уравнение (2.14) можно найти такую величину x 0 , при которой достигается минимум риска.

Исходные данные:

Исправное состояние:

Математическое ожидание:

Вероятность исправного состояния системы:

Среднеквадратичное отклонение:

Приведенные затраты на исправное состояние:

Неисправное состояние:

Математическое ожидание: ;

Дать понятие о статистических решениях для одного диагностического параметра и для принятия решения при наличии зоны неопределенности. Разъяснить процесс принятия решения в различных ситуациях. В чем состоит связь границ принятия решения с вероятностями ошибок первого и второго рода Рассматриваемые методы относятся к статистическим....


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция 7

Тема. МЕТОДЫ СТАТИСТИЧЕСКИХ РЕШЕНИЙ

Цель. Дать понятие о статистических решениях для одного диагностического параметра и для принятия решения при наличии зоны неопределенности.

Учебная. Разъяснить процесс принятия решения в различных ситуациях.

Развивающая. Развивать логическое мышление и естественное - научное мировоззрение.

Воспитательная . Воспитывать интерес к научным достижениям и открытиям в отрасли телекоммуникации.

Межпредметные связи:

Обеспечивающие: информатика, математика, вычислительная техника и МП , системы программирования.

Обеспечиваемые: Стажерская практика

Методическое обеспечение и оборудование:

Методическая разработка к занятию.

Учебный план.

Учебная программа

Рабочая программа.

Инструктаж по технике безопасности.

Технические средства обучения: персональный компьютер.

Обеспечение рабочих мест:

Рабочие тетради

Ход лекции.

Организационный момент.

Анализ и проверка домашней работы

Ответьте на вопросы:

  1. Что позволяет определить формула Байеса?
  2. В чем состоят основы метода Байеса? Приведите формулу. Дайте определение точного смысла всех входящих в эту формулу величин.
  3. Что означает, что реализация некоторого комплекса признаков K * является детерминирующей?
  4. Объясните принцип формирования диагностической матрицы.
  5. Что означает решающее правило принятия?
  6. Дайте определение методу последовательного анализа.
  7. В чем состоит связь границ принятия решения с вероятностями ошибок первого и второго рода?

План лекции

Рассматриваемые методы относятся к статистическим. В методах статистических решений решающее правило выбирается исходя из некоторых условий оптимальности, например из условия минимума риска. Возникшие в математической статистике как методы проверки статистических гипотез (работы Неймана и Пирсона), рассматриваемые методы нашли широкое применение в радиолокации (обнаружение сигналов на фоне помех), радиотехнике, общей теории связи и других областях. Методы статистических решений успешно используются в задачах технической диагностики.

СТАТИСТИЧЕСКИЕ РЕШЕНИЯ ДЛЯ ОДНОГО ДИАГНОСТИЧЕСКОГО ПАРАМЕТРА

Если состояние системы характеризуется одним параметром, то система имеет одномерное пространство признаков. Разделение производится на два класса (дифференциальная диагностика или дихотомия (раздвоенность, последовательное деление на две части, не связанные между собой. ) ).

Рис.1 Статистические распределения плотности вероятности диагностического параметра х для исправного D 1 и дефектного D 2 состояний

Существенно, что области исправного D 1 и дефектного D 2 состояний пересекаются и потому принципиально невозможно выбрать значение х 0 , при котором не было бы ошибочных решений. Задача состоит в том, чтобы выбор х 0 был в некотором смысле оптимальным, например давал наименьшее число ошибочных решений.

Ложная тревога и пропуск цели (дефекта). Эти встречавшиеся ранее термины явно связаны с радиолокационной техникой, но они легко интерпретируются в задачах диагностики.

Ложной тревогой называется случай, когда принимается решение о наличии дефекта, но в действительности система находится в исправном состоянии (вместо D 1 принимается D 2 ).

Пропуск цели (дефекта) — принятие решения об исправном состоянии, тогда как система содержит дефект (вместо D 2 принимается D 1 ).

В теории контроля эти ошибки называются риском поставщика и риском заказчика . Очевидно, что эти двоякого рода ошибки могут иметь различные последствия или различные целы.

Вероятность ложной тревоги равна вероятности произведения двух событий: наличие исправного состояния и значения х > х 0 .

Средний риск. Вероятность принятия ошибочного решения слагается из вероятностей ложной тревоги и пропуска дефекта (математическое ожидание) риска.

Разумеется, цена ошибки имеет условное значение, но она должна учесть предполагаемые последствия ложной тревоги и пропуска дефекта. В задачах надежности стоимость пропуска дефекта обычно существенно больше стоимости ложной тревоги.

Метод минимального риска . Вероятность принятия ошибочного решения определяется как минимизация точки экстремума среднего риска ошибочных решений при максимуме правдоподобия т.е. проводится расчет минимального риска происхождения события при налички информации о максимально подобных событиях.

рис. 2. Точки экстремума среднего риска ошибочных решений

Рис. 3. Точки экстремума для двугорбых распределений

Отношение плотностей вероятностей распределения х при двух состояниях называется отношением правдоподобия.

Напомним, что диагноз D 1 соответствует исправному состоянию, D 2 — дефектному состоянию объекта; С 21 — цена ложной тревоги, С 12 — цена пропуска цели (первые индекс — принятое состояние, второй — действительное); С 11 < 0, С 22 < 0 — цены правильных решений (условные выигрыши). В большинстве практических задач условные выигрыши (поощрения) для правильных решений не вводятся.

Часто оказывается удобным рассматривать не отношение правдоподобия, а логарифм этого отношения. Это не изменяет результата, так как логарифмическая функция возрастает монотонно вместе со своим аргументом. Расчет для нормального и некоторых других распределений при использовании логарифма отношения правдоподобия оказывается несколько проще. Условие минимума риска можно получить из других соображений, которые окажутся важными в дальнейшем.

Метод минимального числа ошибочных решений .

Вероятность ошибочного решения для решающего правила

В задачах надежности рассматриваемый метод часто дает «неосторожные решения», так как последствия ошибочных решений существенно различаются между собой. Обычно цена пропуска дефекта существенно выше цены ложной тревоги. Если указанные стоимости приблизительно одинаковы (для дефектов с ограниченными последствиями, для некоторых задач контроля и др.) то применение метода вполне оправдано.

Метод минимакса предназначен для ситуации, когда отсутствуют предварительные статистические сведения о вероятности диагнозов D 1 и D 2 . Рассматривается «наихудший случай», т. е. наименее благоприятные значения Р 1 и Р 2 , приводящие к наибольшему значению (максимуму) риска.

Можно показать для одномодальных распределений, что величина риска становится минимаксной (т. е. минимальной среди максимальных значений, вызванных «неблагоприятной» величиной Pi ). Отметим, что при Р 1 = 0 и Р 1 = 1 риск принятия ошибочного решения отсутствует, так как ситуация не имеет неопределенности. При Р 1 = 0 (все изделия неисправны) вытекает х 0 → -оо и все объекты действительно признаются неисправными; при Р 1 = 1 и Р 2 = 0 х 0 → +оо и в соответствии с имеющейся ситуацией все объекты классифицируются как исправные.

Для промежуточных значений 0 < Pi < 1 риск возрастает и при P 1= P 1* становится максимальным. Рассматриваемым методом выбирают величину х 0 таким образом, чтобы при наименее благоприятных значениях Pi потери, связанные с ошибочными решениями, были бы минимальными.

рис . 4. Определение граничного значения диагностического параметра по методу минимакса

Метод Неймана—Пирсона . Как уже указывалось, оценки стоимости ошибок часто неизвестны и их достоверное определение связано с большими трудностями. Вместе с тем ясно, что во всех с л у чаях желательно при определенном (допустимом) уровне одной из ошибок минимизировать значение другой. Здесь центр проблемы переносится на обоснованный выбор допустимого уровня ошибок с помощью предыдущего опыта или интуитивных соображений.

По методу Неймана—Пирсона минимизируется вероятность пропуска цели при заданном допустимом уровне вероятности ложной тревоги. Таким образом, вероятность ложной тревоги

где А — заданный допустимый уровень вероятности ложной тревоги; Р 1 — вероятность исправного состояния.

Отметим, что обычно это условие относят к условной вероятности ложной тревоги (множитель Р 1 отсутствует). В задачах технической диагностики значения Р 1 и Р 2 в большинстве случаев известны по статистическим данным.

Таблица 1 Пример - Результаты расчета по методам статистических решений

№ п/п

Метод

Граничное значение

Вероятность ложной тревоги

Вероятность пропуска дефекта

Средний риск

Метод минимального риска

7,46

0,0984

0,0065

0,229

Метод минимального числа ошибок

9,79

0,0074

0,0229

0,467

Метод минимакса

Основной вариант

5,71

0,3235

0,0018

0,360

2 вариант

7,80

0,0727

0,0081

0,234

Метод Неймана—Пирсона

7,44

0,1000

0,0064

0,230

Метод наибольшего правдоподобия

8,14

0,0524

0,0098

0,249

Из сопоставления видно, что метод минимального числа ошибок дает неприемлемое решение, так как цены ошибок существенно различны. Граничное значение по этому методу приводит к значительной вероятности пропуска дефекта. Метод минимакса в основном варианте требует очень большого снятия с эксплуатации исследуемых устройств(примерно 32%), так как исходит из наименее благоприятного случая (вероятность неисправного состояния Р 2 = 0,39). Применение метода может быть оправданным, если отсутствуют даже косвенные оценки вероятности неисправного состояния. В рассматриваемом примере удовлетворительные результаты получаются по методу минимального риска.

  1. СТАТИСТИЧЕСКИЕ РЕШЕНИЯ ПРИ НАЛИЧИИ ЗОНЫ НЕОПРЕДЕЛЕННОСТИ И ДРУГИЕ ОБОБЩЕНИЯ

Правило решения при наличии зоны неопределенности.

В некоторых случаях, когда требуется высокая надежность распознавания (большая стоимость ошибок пропуска цели и ложной тревоги), целесообразно ввести зону неопределенности (зону отказа от распознавания). Правило решения будет следующим

при отказ от распознавания.

Разумеется, отказ от распознавания является нежелательным событием. Он свидетельствует, что имеющейся информации недостаточно для принятия решения и нужны дополнительные сведения.

рис. 5. Статистические решения при наличии зоны неопределенности

Определение среднего риска . Величина среднего риска при наличии зоны отказа от распознавания может быть выражена следующим равенством

где C o — цена отказа от распознавания.

Отметим, что С о > 0, иначе задача теряет смысл («вознаграждение» за отказ от распознавания). Точно так же С 11 < 0, С 22 < 0, так как правильные решения не должны «штрафоваться».

Метод минимального риска при наличии зоны неопределенности . Определим границы области принятия решения, исходя из минимума среднего риска.

Если не поощрять правильные решения (С 11 = 0, С 22 = 0) и не платить за отказ от распознавания (С 0 = 0), то область неопределенности будет занимать всю область изменения параметра.

Наличие зоны неопределенности дает возможность обеспечить заданные уровни ошибок за счет отказа от распознавания в «сомнительных» случаях

Статистические решения для нескольких состояний. Выше были рассмотрены случаи, когда статистические решения принимались д ля различения двух состояний (дихотомия). Принципиально такая процедура позволяет провести разделение на n состояний, каждый раз объединяя результаты для состояния D 1 и D 2 . Здесь под D 1 понимаются любые состояния, соответствующие условию «не D 2 ». Однако в некоторых случаях представляет интерес рассмотреть вопрос и в прямой постановке — статистические решения для классификации n состояний.

Выше рассматривались случаи, когда состояние системы (изделия) характеризовалось одним параметром х и соответствующим (одномерным) распределением. Состояние системы характеризуется диагностическими параметрами х 1 х 2 , ..., х n или вектором х:

х= (х 1 х 2 ,...,х n ).

М етод минимального риска.

Наиболее просто обобщаются на многомерные системы методы минимального риска и его частные случаи (метод минимального числа ошибочных решений, метод наибольшего правдоподобия). В случаях, когда в методе статистического решения требуется определение границ области принятия решения, расчетная сторона задачи существенно осложняется (методы Неймана—Пирсона и минимакса).

Домашнее задание: § конспект.

Закрепление материала:

Ответьте на вопросы:

  1. Что называют ложной тревогой?
  2. Что подразумевает пропуск цели (дефекта)?
  3. Дайте объяснение риску поставщика и риску заказчика.
  4. Приведите формулу метода минимального числа ошибочных решений. Дайте определение неосторожного решения.
  5. Для каких случаев предназначен метод минимакса?
  6. Метод Неймана—Пирсона. Объясните его принцип.
  7. Для каких целей применяется зона неопределенности?

Литература:

Амренов С. А. «Методы контроля и диагностики систем и сетей связи» КОНСПЕКТ ЛЕКЦИЙ -: Астана, Казахский государственный агротехнический университет, 2005 г.

И.Г. Бакланов Тестирование и диагностика систем связи. - М.: Эко-Трендз, 2001.

Биргер И. А. Техническая диагностика.— М.: «Машиностроение», 1978.—240,с, ил.

АРИПОВ М.Н, ДЖУРАЕВ Р.Х., ДЖАББАРОВ Ш.Ю. «ТЕХНИЧЕСКАЯ ДИАГНОСТИКА ЦИФРОВЫХ СИСТЕМ» -Ташкент, ТЭИС, 2005

Платонов Ю. М., Уткин Ю. Г. Диагностика, ремонт и профилактика персональных компьютеров. -М.: Горячая линия - Телеком, 2003.-312 с: ил.

М.Е.Бушуева, В.В.Беляков Диагностика сложных технических систем Труды 1-го совещания по проекту НАТО SfP-973799 Semiconductors . Нижний Новгород, 2001

Малышенко Ю.В. ТЕХНИЧЕСКАЯ ДИАГНОСТИКА часть I конспект лекций

Платонов Ю. М., Уткин Ю. Г. Диагностика зависания и неисправностей компьютера/Серия «Техномир». Ростов-на-Дону: «Феникс», 2001. — 320 с.

PAGE \* MERGEFORMAT 2

Другие похожие работы, которые могут вас заинтересовать.вшм>

21092. Экономические методы принятия предпринимательских решений на примере ТОО «Норма- 2005» 127.94 KB
Управленческие решения: сущность требования механизм разработки. Свою управленческую деятельность руководитель реализует через решения. Достижение поставленной цели исследования потребовало решения следующих задач: теоретического обоснования экономических методов принятия решений в системе предпринимательства; структуризации и внутреннего управленческого обследования на основе анализа внешней и внутренней среды исследуемого предприятия; анализа использования информации экономических результатов...
15259. Методы, применяемые в анализе синтетических аналогов папаверина и многокомпонентных лекарственных форм на их основе 3.1. Хроматографические методы 3.2. Электрохимические методы 3.3. Фотометрические методы Заключение Список л 233.66 KB
Дротаверина гидрохлорид. Дротаверина гидрохлорид является синтетическим аналогом папаверина гидрохлорида а с точки зрения химического строения является производным бензилизохинолина. Дротаверина гидрохлорид принадлежит к группе лекарственных средств обладающих спазмолитической активностью спазмолитик миотропного действия и является основным действующим веществом препарата но-шпа. Дротаверина гидрохлорид Фармакопейная статья на дротаверина гидрохлорид представлена в Фармакопее издания.
2611. ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТИЗ 128.56 KB
Например гипотеза простая; а гипотеза: где –сложная гипотеза потому что она состоит из бесконечного множества простых гипотез. Классический метод проверки гипотез В соответствии с поставленной задачей и на основании выборочных данных формулируется выдвигается гипотеза которая называется основной или нулевой. Одновременно с выдвинутой гипотезой рассматривается противоположная ей гипотеза которая называется конкурирующей или альтернативной. Поскольку гипотеза для генеральной совокупности...
7827. Тестирование статистических гипотез 14.29 KB
Для тестирования гипотезы существует два способа сбора данных – наблюдение и эксперимент. Думаю определить какое из данных наблюдений является научным не составит труда. Шаг третий: сохранение результатов Как я уже упоминала в лекции первой один из языков на которых говорит биология – это язык баз данных. Из этого вытекает то какой собственно база данных должна быть и какой задаче она отвечает.
5969. Статистическое исследование и обработка статистических данных 766.04 KB
В курсовой рассматривается следующие темы: статистическое наблюдение, статистическая сводка и группировка, формы выражения статистических показателей, выборочное наблюдение, статистическое изучение взаимосвязи социально-экономических явлений и динамики социально-экономических явлений, экономические индексы.
19036. 2.03 MB
13116. Система сбора и обработки статистических данных «Метеонаблюдения» 2.04 MB
Работы с базами данных и СУБД позволяют значительно качественнее организовать работу сотрудников. Простота в эксплуатации и надежность хранения данных позволяют практически совсем отказаться от ведения бумажного учета. Значительно ускоряется работа с отчетной и статистической информацией калькуляцией данных.
2175. Анализ области решений 317.39 KB
9й вид UML диаграмм диаграммы вариантов использования см. В этом курсе мы не будем разбирать диаграммы UML в деталях а ограничимся обзором их основных элементов необходимым для общего понимания смысла того что изображено на таких диаграммах. Диаграммы UML делятся на две группы статические и динамические диаграммы. Статические диаграммы Статические диаграммы представляют либо постоянно присутствующие в системе сущности и связи между ними либо суммарную информацию о сущностях и связях либо сущности и связи существующие в какойто...
1828. Критерий принятия решений 116.95 KB
Критерий принятия решений – это функция, выражающая предпочтения лица, принимающего решения (ЛПР), и определяющая правило, по которому выбирается приемлемый или оптимальный вариант решения.
10569. Классификация управленческих решений 266.22 KB
Классификация управленческих решений. Разработка управленческого решения. Особенности управленческих решений Обыденные и управленческие решения. Обыденные решения это решения принимаемые людьми в повседневной жизни.